K'UTERINTJA NGAMA (MARSUPIALA. ILARIIDAE); A REVISED SYSTEMATIC ANALYSIS BASED ON MATERIAL FROM THE LATE OLIGOCENE OF RIVERSLEIGH, NORTHWESTERN QUEENSLAND

T.J. MYERS AND M. ARCHER

Abstract

Myers, T.今. \& Archer, M. 1997:06:30. Kitlerintja ngama (Marsunialia, Ilariidac): a revised systematic analysis based on material from the late Oligocene of Riversleigh, nothwestem Queensland. Memoirs of the Queensland Museum 41(2): 379-3y2. Brishane. ISSN 007988.35

The Riversleigh ilariids come from the late Oligocene White Hunter Site and are Kuterintia ngema Pledge, 1987. Molar cusp morphologies are compared with those of other ilariids and vombatiforms and several morphoelines identified. The range of variation is simitar to that in Phascolurcoscinereus. Cladistic analysis suggests severul hypotheses about intrafamilial relationslips: 1) Ku. ngamuls an ilaiid; 2) Koubor is not an ilarid; and 3) ilarids form a monophyletic clade with the wynyardiids, although she relationships of these taxa to other vonthatomorphians are not resolved. प Ilariitar, Oligaccne, Vombatiformes. White Humter Sile, Riversleigh.

T.J. Myers \& M. Archer Schont of Biological Sciences. University of New South Wales. Sydnex: New South Wules 2052. Anstralia; received 10 November 1996.

Ilariids are extinct marsupials discovered inlate Oligocene deposits of ceniral Australia. Naria includes I. illumidens and I. lawsoni (Tedford \& Woodhurne, 1987): Kuterintia contains Ku. ngama (Pledge, 1987). There is also some controversy concerning the placemen of Koobor within the Phascolaretidac because Pledec (1987) suggested that Kur. ngama may have been ancestral to Ko. jimbarranti, making the latter a potential ilariid. Tedford \& Woodburne (1987) found similarities in upper dentition between I. illumiden.s and Koobor, namely; a paraconule on M^{1}, no paraconule or neometaconule on M^{2} or M^{3}, but considered them symplesiomorphic, concluding that Koobar shared more synapomorphies with phascolarctids than with ilariids.
We review Kuterintangama hased on matenal from the White Hunter Local Fauns at Riversleigh, NW Queensland. White Hunter Site on Hal's Hill, on the D-site Plateatl (Archer et al., 1994; Creaser, 1997) was questionably assigned to early Miocene System B (Archer ct al., 1989. 1994) but the fauna now suggests late Oligocene System A. A tentative correlation is made of White Hunter Local Fauna with the Ngama Local Fauna of the Etadunna Formation at Lake Palankarinna, South Ausiralia.
Pledge (1987) observed that Kinterintja ngama differs from Ilaria in being smaller, having larger cusps, pre- and postcristae on the stylar cusps. postprotacrista and premetaconulecrista separated by a crevice, and an anterior cingulum divided by a stronger preprotocrista. Similarities to f. illumidens include a selenodont structure and
well-developed huccal stylar cusps. Pledge (1987) described the holotype (SAM P24539) nt K'r. ngana as a LM ${ }^{2}$. However, material from Riversleigh suggests that the holotype is a LM ${ }^{3}$.

SYSTEMATICS

Material is deposited in the South Ausitralian Museum (SAMP), and the Qucensland Museum (QMF). Homology of molars and the dP_{3} follows Luckelt (1993). Homology of the other premolars follows Flower (1867). Cusp homology follows Archer (1984). Tedford \& Woosburne (1987) and Pledge (1987).

Order DIPROTODONTIA Owen, 1866 Suborder VOMBATIFORMES Woodburne. 1984
Infraorder VOMBATOMORPHIA Aplin do Archer, 1987
Family ILARIIDAE Tediord \& Woodburne, 1987

Kuterintja Pledge. 1987
TYPE SPECIES. Kuterinujangoma Pledge, 1987 from late Oligocene Etadunna Formation at Lake Palankarinna, northern South Australia.

DIAGNOSIS. Relative to Jlarin: Small, lacking transverse linking crests on the cheek teeth. I I_{1} with low, almost horizontal inclination, dorsally flatlened, transversely compressed and with anterior portion intlected.
P_{3} subrectangular. with I large anterior cuspill and two smaller posterior cuspids only slightly

FlG. 1. Kiuterintio nguma, QMF20810, 23306, Jeft Jentary (P_{3} - M4).
separated. one in a posterolingual position, other in a postcromedial position longitudinally aligned with the anterior cuspid. M1 subovate, with anterior cingulum medially inllected and less developed, with lingual faces of the buccal cuspids near ventical, with less developed preprotocristid and posthypocristid. with preprotocristid and posthypocristid lerminating in line with the "central' cuspids, with small lingual basin on the hypolophid: 'central' cuspid on the protolophid in transverse alignment with the lingual and buccal cuspids on $\mathrm{M}_{1}-\mathrm{M}_{3}$: metaconid separated slightly from the 'central' cuspid of the protolophid; M_{2} with 'central' cuspid on the pro-
tolophid and hypolophid of similar widths and more closely linked, with 'central' cuspid on the hypolophid not linked posteriorly to the enloconid: M z and M_{3} with preprotocristid and posthypocristid not extending as far lingually: M3 with lingual basins less developed, with "central" cuspid on the hypolophid greatly reduced, with posterior cingulum relatively small, with postprotocnstid and prehypocristid not blockinge transverse valley; M4 with compressed posterior. with "central" cuspid not distinguishable on the hypolophid, with the postprotocristid and prehypocristid poorly developed (Fig. 1).
P^{3} subovate, much wider both anteriorly and posteriorly compared to the P_{3}, with narrow anterior portion, with large cusps. Lri-cusped, lacking the posterobuccal cusp, with cusps subequal in height, with twinned central cusps separated by a larger trough. with a larger crevice separating posteromedial and posterolingual cusps, with anterolingual cingulum, with well-developed rib running from the apex of posteromedial cusp to the posterobuccal edge of the posterior cingulum.
M^{1-4} with nearly vertical buccal surfaces on cusps. M^{1} with stylar cusp C almost as large as the paracone, with stylar cusp D as large as the metacone, with buccal border slanting sharply posterobuccally, with posterior cinguluma round convex structure, with all cusps subequal in height; M^{3} with stylar cusp C relatively small, with the eristae forming the borders of the buccal basin on the paracone strongly developed, with the postparacrista separated from stylar cusp C. with stylar cusp E greatly reduced, with preprotocrista strongly developed and dividing the anterior cingulunt; M^{2} and M^{3} with lingual cusps transversely aligned with the buccal cusps; M^{2-1} with the anterior portion of the tooth larger than the posterior; M^{3} with sty]arcusps B and C equivalent in height to the paracone, with the buccal busin on the paracone enclosed at its buccal margin, with stylar cusp D larger, M^{3} and M^{4} without stylar cusp $\mathrm{E} ; \mathrm{M}^{+}$with the lingual half of the transverse valley inflected less towards the posterolingual comer, with stylar cusp C variable. with metaconule variable in pusition, and thus the lingual basin variable in size; (Fig. 4).

COMPARISON: Kuterintja ngama differs from phascolarctids in lacking a paraconule and neometaconule, having longer molars, simpler selenes, separation of buccal selenes, better developed stylar cusps, a strongly developed transverse valley, poorly developed postprotocrista and premelaconulecrista, a protocone that is more

FIG. 2. Kurerintiongama. A, QMF30057, RM ${ }^{1}$, ouclusal view, stereo pair. B, QMF31299, RM ${ }^{2-4}$, occlusal view, stereo pair. C_{3} QMF31301, $\mathrm{RI}_{1-\mathrm{M}_{2}}$ buceal view.
compressed relative to the metaconule on $\mathrm{M}^{1}-$ M^{3}. significant separation of stylar cusps C and D. no protostylid, a lingually convex metaconid. a protoconid that is larger than the metaconid, lingual cusps that are not compressed townds each other, larger crown height, a well-developed posterolingual cusp on P^{3}, no posterobuccal cuspid on P_{3}, central cuspid, having a posterolingual cuspid on P_{3}, at non-bladed P_{3} or P^{3}. no longitudinal valley, and a bulbous p^{3}.

Ku. ngana is distinguished lrom Koohor by its larger stylar cusps, higher crown, larger molars, and continuous crest between protocone and metaconule (Pledge, 1987). Other differences include. 1) more concal stylar cusps', 2) lower selene angles on the buccal basins of the upper molars; 3) Koobor lacks a lingual basin on the transverse valley; 4) Koobor has a poorly developed anterior cingulum; 5) the absence of a pos-
terior depression on the metaconule, as exists on most ilariid molars; 6) Koobor has molars which are slighly compressed lingually; 7) a much wider and longer longitudinal valley exists in Koobor; 8) more poorly developed postprotocrista and premetaconulecrista; 9) a protocone that is compressed longitudinally relative to the metaconule on $\mathrm{M}^{1}-\mathrm{M}^{3} ; 10$) no paraconule on M^{1}; 11) Koobor lacks the posterolingual cusp on P^{3}; and 12) Koobor has an elongated, rather than bulbous, P^{3}.

Kuterintja ngama Pledge. 1987
 (Figs 1-5, 7)

MATERIAL. Hololype SAMP24539, LM ${ }^{3}$. presumed to be a lefi M^{+}by Pledge (1987) from the saddle hetween Mammaion Hill and main escarpmen. NW corner of Litke Palankarinna, 100 km N ol Marree, South Australia in the late Oligevene (Woothurne et a.]. 1993) Ngama Local Founa within the Etadunna Formation. Other material. QMF31302, a right dentary Pragment containing $\mathrm{P}_{3}, \mathrm{M}_{1}$ and M_{2}; QMF23306. QMF20810, a left dentary wilh all cheek teeth and the alveoli for 11: QMF31 301, anterior portion of a juvenile righ dentary, with 18 , dP_{3}, and $\mathrm{M}_{1} . \mathrm{P}_{3}$ is removed from its crypt, and M_{2} has only part of the protoconid remaining; QMF17527, RM3 with roots missing; QMF31300 RM4 with the anterior portion of the irigonid missing: QMF30057. RM1: QMF23203. $1 . \mathrm{M}^{1}$ with a broken anterior cingulum; QMF30058, RM2; QMF31 299, right maxillary fragment containing H^{2-4} : and QMF24604. right maxillary fragment with H^{3} and M^{4}, and alventi for M^{\prime} and M^{2}, QMF30332, partial right maxilla, with partial palate, amerior aygomatic arch. P^{3}. M^{2} and the alventi lor M^{1}. All exeept type from late Oligocene White Hunter Site, Riversleigh, NW Queensland: prevously regarded as possibly System A or early System B (Archer et al., 1984; Archer et al. 1994), bate Oligocene or early Miocene. This species suggeste comparable age to the South Ausiratian type locality.

DIAGNOSIS. As for genus.

DESCRIPTION. Dentary, Deepest below the posterior half of M3. In lateral aspectalveolus for If inclined slightly on its ventral side, horizontal on dorsal side. Mental foramen at the posternor end of this alveolus in the dorsovential midine. and just anterior to P_{1}, only foramen on the dentary (break dorsoventrally lion the junction of Mi and Ma may ubscure others).
J. Lower lirst incisor projecting horizontally Trom the dentary, curving lingually at its anterior (distal) extremity, suhcylindrical, rimsversely compressed, with dorsal surface transversely flat-

FIG. 3. Kuterintja ngama. A, QMF20810, left dentary, occlusal view, stereo pair. B, QMF23306, buccal view.
tened, with enamel from the buccal to ventral surfaces.
dP_{3}. Same as P_{3} except in size, tricuspid, subtriangular.
Anterior cuspid tallest, with widest base. Smaller cuspid posterolingually from anterior cuspid. Third cuspid posterobuccally from anterior cuspid and equivalent in size to the posterolingual cuspid. All cuspids closely linked, conical, with wide bases.
P_{3} (Fig. 1). Transversely compressed, tricuspid. Large, subovate, conical cuspid anteriorly larger, taller and more broadly based than the twin cuspids posteriorly. More buccal of these anteroposteriorly aligned with the large, anterior
cuspid. Posterolingual cuspid taller than its worn buccal counterpart.
Thin, low cristid running from the anterolingual comer of the apex of the anterior cuspid, anterolingually to the base of the cuspid, then turning posterolingually and running further down towards the root, then turning posterobuccally up the cuspid and terminating about half way up the height of the cuspid, in line with the posterior side of the apex of the large cuspid. Anterior cuspid located over the posterior portion of the anterior root; posterior cuspids located directly over the posterior root.
A minor crevice on the anterolingual comer of
TABLE 1. Measurements (mm) of dentition of Kuterintja ngama. Le=length; Mw=maximum width; $\mathrm{Ha}=$ height of anterior cuspid; $\mathrm{Aw}=$ anterior width; Pw $=$ posterior width; $\mathrm{Hp}=$ height of paracone; Hpr=height of protocone; $\mathrm{Hm}=$ height of metacone; $\mathrm{Hml}=$ height of metaconule; $\mathrm{Hprd}=$ height of protoconid; Hmd=height of metaconid; $\mathrm{He}=$ height of entoconid; Hh=height of hypoconid. Italicised numbers indicate dimension may have been lessened by wear.

$\mathrm{QM} \mathrm{Nofl}^{3}$	Le	Mw	Ha	Aw	Pw	Hp	Hpr	Hm	Hml
$30332 \mathrm{RP}^{3}$	8.9	7.5	4.2	-	-	-	-	-	-
$30057 \mathrm{RM}^{1}$	9.7	-	-	8.7	7.7	5.4	4.6	5.2	4.7
$31299 \mathrm{RM}^{2}$	10	-	-	8.6	8.0	4.8	5.4	4.9	5.1
$30058 \mathrm{RM}^{2}$	9.4	-	-	8.9	8.8	4.7	5.4	5.1	5.1
$30332 \mathrm{RM}^{2}$	10	-	-	9.5	9.5	$?$	7	3.3	3.1
$31299 \mathrm{RM}^{3}$	8.4	-	-	7.6	6.5	4.4	5.3	4.1	5.1
$24604 \mathrm{RM}^{3}$	8.5	-	-	8.1	7.0	4.5	5.6	4.4	4.8
$31299 \mathrm{RM}_{4}^{4}$	7.2	-	-	6.7	4.9	3.8	4.4	3.3	3.3
$24604 \mathrm{RM}^{4}$	7.6	-	-	6.8	5.5	4.0	5.1	3.4	3.5
$23203 \mathrm{LM}^{1}$	10	-	-	8.3	8.0	4.2	4.8	4.2	4.2
$31301 \mathrm{dP}_{3}$	3.9	3.6	2.8	-	-	-	-	-	-
$31301 \mathrm{RP}_{3}$	6.7	4.9	5.7	-	-	-	-	-	-
$31302 \mathrm{RP}_{3}$	6.6	5.0	4.8	-	-	-	-	-	-
$31301 \mathrm{RM}_{1}$	10	-	-	6.8	7.4	5.6	5.0	5.7	6.4
$31302 \mathrm{RM}_{1}$	9.5	-	-	6.5	7.3	3.7	3.7	42	40
$31301 \mathrm{RM}_{2}$	9.8	-	-	7	7	6.5	7	$?$	$?$
$31302 \mathrm{RM}_{2}$	9.9	-	-	6.9	7.2	3.8	3.6	4.0	3.7
$31301 \mathrm{RM}_{3}$	10	-	-	6.3	5.8	6.0	4.4	4.3	6.1
$17527 \mathrm{RM}_{3}$	9.7	-	-	6.4	6.0	6.3	4.4	4.4	6.2
$31300 \mathrm{RM}_{4}$	9.1	-	-	7	5.6	3.8	3.5	3.2	3.7
$23306 \mathrm{LP}_{3}$	6.8	5.4	5.9	-	-	-	-	-	-
$23306 \mathrm{LM}_{1}$	9.9	-	-	6.4	6.9	4.9	4.5	4.7	5.4
$23306 \mathrm{LM}_{2}$	9.7	-	-	7.4	7.5	4.9	4.4	4.5	5.1
$23306 \mathrm{LM}_{3}$	9.4	-	-	7.2	$?$	4.4	4.9	4.1	5.0
$23306 \mathrm{LM}_{4}$	9.2	-	-	6.8	5.7	4.1	4.2	3.7	3.7

the tooth. A deeper crevice dividing the tooth into sub-equal halves, with the large anterior cuspid on the anterior side and the twinned posterior cuspids on the posterior side, blocked half way along by a crest linking the anterior cuspid to the posterobuccal cuspid. A shallower crevice between the posterior cuspids blocked by a minor crest running from the apices of these cuspids.
Small cristid running posteroventrally from the posterobuccal corner of the apex of the posterobuccal cuspid, turning posterolingually, joining a wider posterior cingulum. Posterior cingulum curving anterolingually before joining the base of the posterolingual cuspid.

Lower Molars. Subrectangular. M_{1-3} subequal; M_{4} sinaller. Crown heights decreasing from M_{1} 4. Tooth row curving posterolingually (Fig. 1).

M1: 'Central' cuspids on the protolophid and hypolophid are neomorphs (Tedford \& Woodburne, 1987). 6-cuspid; anterior portion narrower than posterior. Trigonid triangular; anterolingual border inclined posterolingually; anterobuccal border of trigonid inclined posterobuccally; both these inflections originating from an anteromedial position of the anterior cingulum, at termination of preprotocristid. Talonid wider than trigonid. Protoconid over the posterior portion of the anterior root; posterior cuspids aligned over the central portion of the posterior root. Preprotocristid (or paracristid) relatively wide, generally low, with pocket between the buccal margin, the anterior cingulum and the anterior face of the protoconid, with smaller and less well defined pocket between the anterior cingulum, the lingual margin of the preprotocristid and the anterior surfaces of the 'central' cuspid and metaconid. 'Central' cuspid of protolophid with apex slightly anterior to the protoconid and metaconid. Anterior positioning of 'central' cuspid or neomorph more exaggerated on the hypolophid. Both 'central' cuspids of similar height, lower than main cuspids. 'Central' cuspid on protolophid forming a lingual basin with the metaconid, not totally enclosed, with small openings anteriorly and posteriorly. Similar, small basin formed between the 'central' cuspid of the hypolophid and the entoconid, with comparable openings to its counterpart on the protolophid, with anterior opening nuch smaller.
A deep crevice dividing 'central' cuspids from the main buccal cuspids, continuous anteroposteriorly, shallower in the central part of the tooth. Transverse valley interrupting this lon-

FIG. 4. Kuterintja ngama. A-B, QMF30058, RM ${ }^{2}$. A, occlusal view; B, buccal view. C-D, QMF30057. RM^{1}. C, occlusal view; D , buccal view.
gitudinal crevice wide, blocked at its buccal extremity by a small, posterobuccally slanting cingulum linking the base of the protoconid to the base of the hypoconid. Thin crevice in the transverse valley preventing symmetrical postprotocristid and prehypocristid (cristid obliqua) and postmetacristid and preentocristid from linking. Metaconid and entoconid with apices steeply inclined, rather than conical, with lingual surface of each much taller than the buccal. Entoconid higher than metaconid higher than 'central' cuspids, with slight gradient descending from lingual to buccal. A thin posterior cingulum and a small pocket in the posterolingual corner of the tooth; pocket bordered by the lingual end of the posterior cingulum, with 2 crests from the posterolingual and posterobuccal sides of the apex of the entoconid, respectively.

In QMF31301 protoconid and hypoconid with lingual surfaces slightly more vertically orien-

FIG. 5. Kute ringangama. A. SAM P24539, hovelype. LM ${ }^{3}$. B. QMF24604, RMI ${ }^{3}$. C. QMF31249, RM ${ }^{3}$.
tated. prossibly due to less wear than observed in QMF23306.
M_{2} Like M_{1} except: anterior end restiny upon the posterior cingulum of M_{1}; trigonid subrectangular rather than triangular, due to the anterior congulum being more transversely lincar, amterior
pockets lormed with the anterior cingulum smaller; trigonid and talonid equal in transverse width. 'Central' cuspid on the protulophid in direct transverse alignment with the protoconid and metaconid; "central" cuspid on the hynolophid more to anterior; hypoconid slighty more posterior. Crevice bet ween the linked lingual cuspids and the buccal cuspid shallower (possibly due to wear on protoconid and hypoconid). Cuspid height gradient from lingual to buccal much steeper (possibly due to wear). Pocket at the buecal end of the transverse valley larger. Cristid obliqua (or prehypocristid) and hypocristid (posthypocristid) more developed. Lingual pocket on the protolophid less well delined, with the openings between the metaconid and 'central' cuspid larger. Small posterolingual pocket bordered by postentocristid, hypocristid and a small posterior cingulum, with most of the latter hiduen by Mz.

M3. Same as M2 except: anterior cingulum rounded. Crown height reduced; with height gradient. Metaconid and 'central' cuspid not closely linked. separate entities with a crevice between the two cuspids. Crevice of variable depth. "Contral' cuspid on the protolophid larger, highlighting an increase in size from M_{1} to M_{3}. Crevice between 'central' and buccal cuspids shallower, decreasing in depth down the tooth row. Despue damage to the taknid, "centrals cuspid on the hypolophid much reduced. Entoernid suth-equal in height to the 'central' cuspid on the hypolophid, transversely compressed. Pusterior cingulum and posterobuccal basin much shorter.

Juvenite M_{3} with an anterolingual basin bigger than in M_{1} or M_{2}. paracristid terminatling in longitudinal alignment with the buccal side of the metaconid.
M. Shortest and narrowest moliar, with lowest crown, rounded subrectangular, with a very rounded anteror cingujum. Same an Mzexcepl: protolophid and hypolophid slanting more anterolingually, due to the buccal cuspide heing posterior to the lingual cuspids.
'Central' cuspid on the protolophid not linked to the metaconid; crevice between these 2 cuspids deeper. 'Central' cuspid on the hypoluphid greatly reduced, more so than in M_{3}, further to posterior. Posterior cingulum short, extending to the medial line of the tooth. Posterolingual basin greatly reduced. Transverse valley closed lingually and huceally. Lingual end of the transverse
valley curving posterolingually; buccal end curving posterobuccally. Cristid obliqua and hypocristid relatively short. All cuspids subequal in height, with the metaconid slightly larger than the entoconid = protoconid and hypoconid.
p^{3} Subovate, tricusped, transversely wide. Anterior pontion narrower than posterior. Cusps 3. large, subequal in height. Anterior and posteromedial cusps Jongitudinally aligned, separated by a shallow trough. A large crevice separating the posteromedial and posterolingual cusps. With very small anterolingual cingulum and larger posterior cingulum. A thin rib running from the apex of the posteromedial cusp to the posterobuccal edge of the posterior cingulum.

Upper molars. Stylar cusps well-developed; general selenodont cusp pattern; high crowned, with a general gradient towards the lingual side, with 4 major cusps (paracone, protocone, metacone and metaconule), with a stylar shelf consisting of stylar cusps B,C.D and E.
M^{1} (Fig, 4), Buccal cusps of RM^{1} positioned more posteriorly than in other molars, with posterobuccal slant, wider posteriorly than anteriorly, giving an anterolingual slant to the buecal border. Stylar cusp B smaller and further anterior than in other molars. Stylar cusp C as large as that on M^{2}, anterior to the postparacrista; crista not forming part of the posterior face of the stylar cusp. Stylar cusp D largest cusp, subequal in height to the metacone, larger than in any other molar. Stylar cusp E more developed than in other molars, larger than stylar cusp B. A minor cuspule on the anterior of stylar cusp D, buccal to the termination of the postmetacrista, larger than stylar cusp B, but slightly smaller than stylar cusp E. All stylar cusps subconical to iriangular, excent posterobuccally-aligned ridge, stylar cusp C . Buccal margin wider than lingual; blocking crests in the transverse valley absent (some minor partial blockages buccally); anterior cingulum curving posterobuccally at its buccal extremity; preparacrista orientated less transversely than in other upper molars; minor depression on the posterior face of the metaconule less developed than in M^{2}; buccal basins on the paracone and metacone poorly developed compared to other molars; posterior cingulum thinner than in other molars.
M^{2} (Fig. 4). Square. Cusp sizes: paracone $>$ metacones protocone $=$ metaconule. Stylar
cusp height: $C>D>B>E$. Stylar cusp B connected to the paracone by a preparacrista, and stylar cusp C via a postparacrista. Stylar cusp D connecting to the metacone by a premetacrista, and stylar cusp E connected to the metacone by a postmetacrista. Buccal basin deep, formed between stylar cusps B and C and the paracone. The homologous basin on the metacone less distinct, enclosed less tightly, slanting steeply posterobuccally towards the reduced stylar cusp E. Basin on the metacone deepest anterolingual to stylar cusp E. Large transverse valley dividing this tooth in half, containing the paracone (and associated stylar cusps) and protocone anteriorly, and the metacone and metaconule posteriorly, partially blucked buccally by an incomplete crest linking premetacrista and postprotocrista, blocked centrally by a small crest linking postprotocrista and premetaconule crista, stopped at its lingual extremity by a very low crest linking the lingual sides of protocone and metaconule (lingual cingulum). Buccal faces of protocone and metaconule steeply inclined, almost to the point of being vertical; anterior cingulum well-developed. running buccally from the protocrista to the anterior side of stylar cusp B, and lingually from the anterolingual comer of the base of the protocone to the protocrista; posterior cingulum smaller than anterior cingulum, with the former extending from stylar cusp E to join the postmetaconulecrisla; small depression on the lingual side of the postmetaconulecrista and medial posterior base of the metaconule (perhaps remnant of the lingual portion of the poste. rior cingulum): all cusps over the mid-line of the roots; stylar cusps triangular, tather than found or conical; buccal cusps with very round apices.
M^{3} (Fig. 5). Same as M2 except: crown lower, 4 major and stylar cusps retaining same relative heights; stylar cusp E further reduced, virtually non-existent; posterior cingulum less defined; small pocket on the posterior side of the metaconule on M^{2} absent: lingual cusps closer to the anterior side of their respective roots. Stylar cusp C more to posterior than in M^{2}, with postparacrista forming part of this stylar cusp; buccal basin on the paracone of M^{3} larger than in M^{2}, triangular, with wider buccal edge, Transverse valley partially blocked buecully by a crest linking stylar cusps C and D, but not by a crest linking the premetaconulecrista and postparacrista, with central and lingual blocking crests. Crest linking stylar cusp D and the metacone larger and more uniform; stylar cusp E more

TABLE 2. Characters and character states used in the ilariid intrafamilial phylogenetic analysis.

Characters		States
1	Stylar cusp development	$0=$ poor, $1=$ well
2	Transverse valley on lower molars	$0=$ absent; $1=$ moderate; $2=$ well-developed
3	Transverse linkages between cuspids	$0=$ none; $I=$ poor; $2=$ moderate; $3=$ well developed
4	Post protocrista and pre metaconulecrista	0 =strongly developed; 1=poorly developed
5	Protocone compressed longitudinally relafive to metaconule (on $\mathrm{M}^{-} \mathrm{M}^{3}$)	$0=$ absent; $1=$ present
6	Separation of stylar cusps C and D	$0=$ no significant separation: l=significant separationby large trough
7	Paraconule on M^{\prime}	$0=$ well developed; $1=$ poorly developed; $2=$ absent.
8	Paraconid on M_{1}	$0=$ absent; $1=$ weak; $2=$ strongly developed
9	Protostylid	$0=$ present; 1 =absent
10	Metaconid	$0=$ conical: $1=$ lingually convex crest
11	Relative heights of the anterior cuspids	$0=$ subequal ; $1=$ protoconid larger than metaconid
12	Overall tooth size	$0=$ small; $1=$ large
13	Lingual cusps	$0=$ compressed toge ther; $1=$ not compressed i=nol compresse
14	Crown height	$\begin{aligned} & 0=\text { low; } 1=\text { moderate; } \\ & 2=\text { high } \end{aligned}$
15	Posterolingual cusp on P^{3}	$0=$ absent; $1=$ slight cusp; $2=$ moderate $; 3=$ well-developed
16	I_{1} unimemersi)	$0=$ dorsoventrally flattened; $1=$ caniniform and conical; $2=$ dorsally flattened and distally inflected
17	$\begin{array}{\|l} \hline \text { Posterobuccal cuspid on } \\ \mathrm{P}_{3} \end{array}$	$0=$ absent; $1=$ present
18	'Central' cuspid	$0=$ absent; $1=$ present
19	$\begin{array}{\|l\|} \hline \begin{array}{l} \text { Posterolingual cuspid on } \\ \mathrm{P}_{3} \end{array} \\ \hline \end{array}$	$0=$ absent; l=present
20	lingual closure of transverse valley by a cingulum (on upper molars)	$0=$ cingulum absent; $1=$ incipient cingulum (in form of cuspules); $2=$ cingulum present
21	Bladed P_{3}	0 =present; 1=absent
22	Bladed P^{3}	$\begin{aligned} & 0=\text { strongly bladed; } \\ & 1=\text { weakly bladed; } \\ & 2=\text { absent } \end{aligned}$
23	Posterobuccal cusp on P^{3}	$0=a b s e n t: 1=p r e s e n t$
24	Longitudinal valley (i.e. distance between lingual \& buccal cusps / ids)	$0=$ well-developed; $1=$ moderately developed; 2=absent
25	P^{3}	0=bulbous; $1=$ elongate

anteriorly positioned; buccal basin on the metacone narrower, slanting more anterobuccally.
M^{4}. Sub-triangular, posteriorly compressed. Same as M^{3} exccpt: crown height very small, with the protocone>paracone=metacone> metaconule. Stylar cusp B>D; stylar cusp C nonexistent; stylar cusp E extremely reduced or missing. Crevice between the paraconc and protocone transversely wider. Buccal surface of the metaconule and protocone far less vcrtically inclined. Anterobuccal basin larger; buccal basin on the metaconc absent; buccal basin on the paracone very shallow, slanting posterobuccally. Transverse valley not blocked buccally, curving posterobuccally rather than being transverse, with lingual end enclosed slightly, by a low crest (i.e. the crest does not continue to the basc of the protocone). Anterior cingulum very small. Posterior root slants posteriorly rather than vertically.

REMARKS. Comparing LM ${ }^{1}$ QMF23203 to RM ${ }^{1}$ QMF30057: buccal half of the anterior cingulum transversely shortcr; stylar cusps B and E less developed; cuspule on the anterior face of stylar cusp D absent. M ${ }^{3}$ of QMF24604 cxhibits variation compared to the M^{3} of QMF31299 as follows: 1) stylar cusp D is larger; 2) the distance between stylar cusps D and E is greater and therefore a bigger buccal basin is found on the metacone; and 3) the medial lingual basin is divided into two sub-basins at its lingual margin by a very small transverse crest.

QMF24604 highlights the variability in M^{4}, as follows: posterior half not as compressed as in M^{4} of QMF31299, and therefore has a longer and wider posterior cingulum. Stylar cusp E is much reduced. Therefore the buccal basin on the metacone is also present and it is as deep as the basin on the paracone. Stylar cusp D is also more defined and larger than in M^{4} of QMF31299. The medial lingual basin is smaller. The anterior cingulum extends further lingually to the base of the protocone. The transverse valley is blocked in two places rather than one. It is blocked buccally by a crest linking stylar cusps C and D, and is partially blocked by a small crest linking postparacrista and premetaconulecrista. The crest partially blocking the lingual extremity in QMF31299 is not present. Large stylar cusp C is not present in QMF31299. A well developed and enclosed buccal basin on the paracone is absent in QMF31299.

TABLE 3. Ilariid intrafamilial data matrix as used by PAUP.? = fossil material missing or status uncertain; $\mathrm{a}=$ $1 \& 2 ; b=0 \& 1 ; c=0 \& 2$

Таха	CHARACTERS AND STATES																								
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25
Madakoala spp.	0	0	1	0	0	0	0	2	0	0	0	0	0	0	1	?	1	0	0	c	0	0	0	0	0
P. cinereus	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	0	0	2	0	1	1	0	0
Koobor notabalis	0	?	?	0	0	0	0	?	?	?	?	0	0	0	0	?	?	?	?	1	?	1	0	1	0
Ilaria illumidens	1	2	2	1	1	1	1	2	0	0	0	1	1	2	2	1	1	1	1	2	0	1	0	2	0
Ilaria lawsoni	?	2	2	?	?	?	?	1	1	1	1	1	$?$	2	?	1	1	1	1	?	1	2	1	2	1
Kuterintja ngama	1	2	1	1	1	1	2	0	1	1	1	0	1	2	3	2	0	1	1	2	1	?	?	2	?
wynyardiids	1	1	3	0	0	1	2	0	1	0	1	0	1	1	a	2	0	0	0	0	1	2	0	2	1

PHYLOGENETIC SYSTEMATICS

Twentyfive dental characters with up to 4 states each (Tablc 2) were used to develop the data matrix following character argumentation and polarisation (Table 3) for the intrafamilial analysis of ilariids. Three outgroups used to determine polarities are: 1) the modern Koala, Phascolarctos cinereus; 2) Madakoala; and 3) wynyardiids. The former is the most derived member of a primitive outgroup because the Phascolarctidae is the stem taxon from which the vombatomorphian radiation diverged (Marshall ct al., 1990; Aplin \& Archcr, 1987). Madakoala devisi and Madakoala wellsi are employed because of the primitive position of Madakoala within the phascolarctid radiation (Woodburne et al., 1987). Primitive and dcrived phascolarctids were used to determine the relationships of species of Koobor. Wynyardiids include Namilamadeta snideri and Muramura sp. and are a closcr sister group of the ilariids than the phascolarctids, therefore providing a basis for polarising character states within the Vombatomorphia.

Character optimisation is performed after the character analysis has been completed and the most parsimonious trees found. The two optimisation algorithms used by PAUP are ACCTRAN and DELTRAN. ACCTRAN accelerates the evolutionary transformation of characters so that changes occur ait the earliest possible stage on the optimal tree. As far as homoplasy is concerned, this algorithm has the effect of favouring reversal of character states over convergences. DELTRAN delays transformation of characters so that changes occur as far up the optimal tree as possible. This has the effect of favouring convergences over character reversals (Wiley et al., 1991). DELTRAN analyses are favoured here because of the large amount of missing character data in the matrices.

RESULTS. the optimal tree (Fig. 6) has 50 stcps ; a consistency index (CI) of 0.800 ; a homoplasy index (Hl) of 0.260 ; a retention index (RI) of 0.778 ; and a rescaled consistency index (RC) of 0.622. Notably the ingroup (Koobor notabalis, I. lawsoni, I. illumidens and Kuterintja ngama) did not form a monophyletic clade. Ko. notabalis is sister taxon to the Wynyardiidae, Ku. ngama, I. illumidens and I. lawsoni clade. Madakoala and Phascolarctoscinereus formed a basal monophyletic clade.
Bootstrap analysis for the most parsimonious tree had the clade excluding phascolarctids and Koobor supported 99% of the time. The ilariid clades, excluding and including Ku. ngama, occurred 78% and 95% of the time respectively.

Removal of the wynyardiids as an outgroup had no effect on the topology in the optimal trec. A bootstrap analysis on data excluding the wynyardiids found the clade containing I. illumidens and I. lawsoni to be supported 62% of the time, slightly lower than in the previous analysis. While the clade including all 3 ilariid species was supported on all occasions.

Another method of testing support for the optimal tree is to examine the frequency and topology of the 'next best' trees (Simmons, 1993). PAUP evaluated 945 trees and found one optimal tree of 50 steps. Two trees of length 51 were observed as well as one tree of 52 stcps. Neither of the trees of 51 steps in length are considered here as the phyletic relationships presented by each do not represent the phascolarctids as a monophyletic clade. In both cases Koobor is intermediate between Madakoala spp. and Phascolarctos cinereus.

DISCUSSION

Classification of Ku. ngama as an ilariid was tentative (Pledge, 1987) and controversy surrounded placement of Koobor. Comparison of the

Riversleigh ilariid with species of llaria and Kuterintja ngama, confirms that the Riversleigh animal is indistinguishable from the latter. Dental variation in Phascolarctos cinereus, one of Ku. ngama's closest living relatives, suggests that: 1) variation in Riversleigh fossil material is in the range for vombatiform species, and represents only one taxon; and 2) the Riversleigh species is Kı. ngama.

DISCUSSION OF THE PHYLOGENETIC ANALYSIS. Kuterintjangama as the sister taxon of a clade containing Ilaria illumidens and llaria lawsoni (Fig. 6), and not united with wynyardiids or Koobor, reinforces classification of this animal as an ilariid. Synapomorphies used by DELTRAN to unite ilariids include: 1) a well-developed transverse valley; 2) poorly-developed postparacrista and premetaconulecrista; 3) protocone longitudinally compressed relative to the metaconule on $\mathrm{M}^{1}-\mathrm{M}^{3}$; 4) large crown height; 5) moderately well-developed posterolingual cusp on $\mathrm{P}^{3} ; 6$) closure of the transverse valley on upper molars by a lingual cingulum; 7) a non-bladed and bulbous $P^{3} ; 8$) a non- bladed P_{3} and 9) a 'central' cuspid on the protolophid and hypolophid of lower molars. These synapomorphies only apply to the Ilariidae relative to the other taxa used in this analysis, and may prove to be symplesiomorphies when all other vombatomorphian taxa are included. Some of these synapomorphies refer to the upper dentition, which is unknown for Ilaria lawsoni. However, the close similarities between the lower dentition of both Ilaria species suggests that these synapomorphies will be generically significant when upper dentition for I. lawsoni is found. Synapomorphies used by the same algorithm to unite species of Ilaria include: 1) moderately well-developed transverse linkages between cuspids; 2) weak paraconid; 3) large tooth size; and 4) transversely compressed, caniniform lower first incisors.
In constructing the most parsimonious tree, 9 characters were found to exhibit some degree of homoplasy. According to DELTRAN moderately well-developed transverse linkages between cuspids is due to convergence between primitive wynyardiids and species of /laria, with Kuterintja ngama with plesiomorphic poorly developed linkages. Conversely, ACCTRAN suggests that moderately well- developed transverse linkages were already a feature of the common wynyardiid/ilariid ancestor, possibly before Koobor diverged from the vombatomorphian lin-

FIG. 6. Relationships of the Ilariidae and Koobor. DELTRAN Synapomorphies: A-weak longitudinal valley; B-well-developed stylar cusps; moderately developed transverse valley; separation of stylar cusps C and D ; weak paraconule on M^{l}; no protostylid; protoconid>metaconid; no compression of lingual portion of tooth; moderate crown height; dorsally flattened and distally inflected 1_{1}; no longitudinal valley; C-well-developed transverse valley; poorly developed postprotocrista and premetaconulecrista; protocone longitudinally compressed relative to metaconule on $\mathrm{M}^{1}-\mathrm{M}^{3}$; large crown; moderately developed posterolingual cusp on P^{3};' central' cuspid; posterolingual cuspid on P_{3}; lingual closure of transverse valley on uppers by a cingulum; nonbladed P_{3} and P^{3}; D-moderately well developed transverse linkages; weak paraconid on M_{1}; large teeth; caniniform and conical I_{1}. ACCTRAN Synapomorphies: A-moderately developed transverse valley; moderately developed transverse linkages; no protostylid; protoconid metaconid; dorsally flattened and inflected I_{t}; no posterobuccal cuspid on P_{3}; moderately developed longitudinal valley; B-well-devcloped stylar cusps; separation of stylar cusps C and D; no paraconule; uncompressed lingual portion of tooth; moderate crown height; moderately developed posterolingual cusp on P^{3}; no longitudinal valley; C -well-devcloped transverse valley; poorly developed postprotocrista and premetaconulccrista; protoconc longitudinally compressed relative to metaconule on $\mathrm{M}^{1^{1}}-\mathrm{M}^{3}$; metaconid a lingually convex crest; high crowns; 'central' cuspid; posterolingual cuspid on P_{3}; transverse valley closed lingually by cingulum; nonbladed P_{3} and P^{3}; bulbous P^{3}; D -poorly developed paraconulc; weak paraconid on M_{1}; large teeth; caniniform, conical 1_{t}; posterobuccal cuspid on P_{3}; and P^{3}.
eage. Poorly-developed transverse linkages in Kı ngama would therefore be the result of a reversal to the phascolarctid state. The ACCTRAN model appears preferable, although discovery of a lower dentition for Koobor would help resolve its classification.

The poorly-developed paraconule on M^{1} of Ilaria illumidens (Tedford \& Woodburne, 1987), is either a plesiomorphy dating from some time after divergence of Koobor (DELTRAN), or the result of a reversal (ACCTRAN). The former hypothesis implies that Joss of the paraconule is convergent between wynyardiids and Ku. ngama, while the latter, and possibly more parsimonious, hypothesis suggests that the paraconule was already lost from the vombatomorphian lineage before the wynyardiids and ilariids diverged.
The paraconid on M_{1} is another homoplasic character. For both algorithms character transformation suggests that a well-developed paraconid is convergent between l. illumidens and Madakoala. A poorly developed paraconid is deemed to be convergent between species of Ilaria and primitive Madakoalu, with absence of a paraconid being the plesiomorphic phascolaretid character'state. However, a more likely solution is: 1) that a well-developed paraconid is the plesiomorphic condition; 2) that absence of a well-developed paraconid in P. cinereus is a derived condition; 3) that the paraconid was gradually reduced or lost before or after Koobor diverged; 4) that the paraconid in specios of Ilaria represents a reversal to the plesiomorphic state; and 5) that loss of a paraconid is convergent between P. cinereus, wynyardids and possibly Koobor. Knowing whether there was or was not a paraconid in Koobor would help clarify this situation.
Both algorithms suggest that a protostylid on M_{1} of Ilaria illumidens represents a reversal to the plesiomorphic phascolarctid condition. The only diserepancy between the two character transformation pathways is the point at which the protostylid was losl. DELTRAN delays loss of the protostylid until after the divergence of Koobor, while ACCTRAN maintans that loss occurred before the divergence. An identical character transformation occurs for relative heights of the anterior cuspids ${ }^{+}$(character II), such that euspids which are subequal in height represent a reversal to the plesiomorphic condition for l. illumidens. Possessing a protoconid larger than the metaconid is therefore a synapomorphy uniting wynyardrids. $\%$. lawsom, Kuatrinfa ngama and possibly Knolrw: A
posterobuccal cuspid on P_{3} of species of Maria is deemed to be a reversal to the plesiomorphic phascolaretid condition by ACCTRAN, while DELTRAN suggests that absence of this struetwre is convergent betwoen wynyardiids and Kuterintja ngaria. Agan ACCTRAN seems to be the mosi parsimonious, implying that the posterobuccal cuspid was lost before wynyardiids and ilariids, and possibly Koobor, diverged.
For lingual closure of the transverse valley on upper molars (character 20) the pathway for character transformation is unclear due primarily to the variable narure of this structure in Madakoala. However, the suggested transformation sequence is: 1) a partial cingulum, in the form of 2 cuspules on the anterolingual and posterolingual bases of the metaconule and protocone respectively, was present in the ancestral koala; 2) the two cuspules eventually joined, convergently forming the derived lingual cingulum in P, cinereus, some specimens of Madakoala and ilarids; and 3) other Madakoala and wynyardiids developed in the opposite direction, convergently losing the cuspules altogether. The two cuspules occur in Koobor notabalis but not in Koobor jimbarati (Archer, 1977), perhaps suggesting that the latter is more derived than the former. Allernatively, a lingual cingulum may be a plesiomorphic phascolaretid condition. implying that the cuspules in Ko, hofabalis are an apomotphic vestige. In this case, absence of a lingual cingulum would be a mure derived condition, convergert between some specimens of Madakoala, Ka, jimbarath and wyoyandiids.
The final character transformation found to contain some degree of homoplasy involved a cusp on the posterobuccal margin of P^{3} (character 23). The sequence of change suggested by the algorithms is that ansence of such a cusp is the plesiomorphic condition. and that species of Madakaala, /haria illumidens and possibly 1. lawsoniconvergently share a defived posterobuccal cusp). This transformation sequence seems unlikely because Madakoala are overall more plesiomurphic phascolarctias (Woodburne el al., 1987) and a posterobuccal cusp on P^{3} is more likely to be the plesiomorphic condition. If so, loss of this structure is a symapomorphy for Koobor, wynywrdids and Kル ngama, and is comvergent on the condition in Phascolarctos cinereus. Absence of the cusp) in this context is yet another potential character state separating Kocbor fromplascolarctids.

According to Simmons (1993) Use expected
value for the consistency index of a tree with 7 taxa is:

$$
\mathrm{Cl}=0.90-0.022(7)+0.000213(7)^{2}=0.736
$$ (3 s.f).

The observed CI for the optimal intrafamilial tree is $0.800,0.064$ from the expected value. The observed CI value implies slightly less homoplasy for the intrafamilial analysis than would be expected for seven taxa. Similarly the retention index (RI) and the rescaled consistency index (RC) are reasonably large, emphasising the low degree of homoplasy and potential for homoplasy respectively.
The optimal tree which includes all outgroup taxa is reasonably well-supported by bootsirap analysis and by the lack of significantly different trees, of plausible topology, within a few steps of the most parsimonious. The low bootstrap result for the llaria clade is almost totally due to the amount of missing data for I. lawsont. This study supports the notion that Ku, ngama is an ilariid and forms a monophyletic clade with Ilaria.

CLASSIFICATION OF KOOBOR

Pledge (1987) discussed the possibility that Kuterimija ngama is more closely related to Koobor than Ilaria. The lower dentition and upper molars in addition to M^{3} demonstrates that Ku. ngama is an ilariid. One of the few similarities between Koobor and Kıngama is the smooth rounding of the lingual faces of the lingual cusps, a character state previously thought to unite the taxa phyletically (Pledge, 1987). However, smooth and rounded lingual faces on lingual cusps are also a feature of wyyardiids, and to a lesser extent Madakoala, suggesting that it is plesiomorphic. The ambiguity of this character state also increases the possibility of homoplasy. Pledge (1987) hypothesised that Ku. ngama may be ancestral to Koobor. Our study does not support this view.
Koobor notabalis appears to be the primitive sister-group of wynyardiids plus ilariids. We have no clear support, however, for Koobor being in the Phascolarctidae. This may be indirect support for the suggestion that Koobor represents a distinct family of vombatiform marsupials. DELTRAN found only one synapomorphy potentially uniting Koobor with the wynyardiids and ilariids: the less well-developed longitudinal valley on the molars. ACCTRAN found 7 synapomorphies for a Koobor, wynyardiid and ilariid clade. This should not be taken at face value, however, as 6 of these character states refer to the lower dentition which is unknown for Koobor. 10
synapomorphies were found by DELTRAN to unite wynyardiids and ilariids to the exclusion of Koobor (Fig. 6).

BIOCORRELATION OF RIVERSLEIGH AND THE ETADUNNA FORMATION

Ku. ngama occurs in the White Hunter Local Fauna at Riversleigh and in the Ngama Local Fauna in the upper Etadunna Formation. Ilaria Iawsoni occurs in the Ditjimanka Local Fauna in the lower Etadunna Formation. Ilaria illumidens occurs in the Pinpa Local Fauna of the Namba Formation, at Lake Pinpa.

Woodburne et al. (1993) suggested at least 6 magnetic reversals within the Etadunna sequences, correlated them with a biostratigraphic zonation and the MPTS (Fig. 7) and suggested $24-28 \mathrm{Ma}$ for the base of the Etadunna Formation.

Woodburne et al. (1993) correlated Zone D with the Ngama and Tarkarooloo Local Faunas. Correlation of magnetic polarity and biostratigraphic zones places zone D in lower magnetozone R3, which in turn correlates with Chron 7 n .1 r of the MPTS, or $24.7-25.0 \mathrm{Ma}$. Ku. ngama therefore, correlates White Hunter Site with the Ngama Local Fauna at $24.7-25.0 \mathrm{Ma}$ providing: 1) that ilariid material in White Hunter Site has not been reworked from older deposits (which, given the lack of evidence for weathering or transport, does not appear likely); and 2) that the apparently short temporal range of Ku. ngama in the Etadunna Formation is the full range of this species.

ACKNOWLEDGEMENTS

Vital support for research at Riversleigh has come from the Australian Research Grant Scheme, the National Estate Grants Scheme (Queensland), the University of New South Wales, the Commonwealth Department of Environment, Sports and Territorics, the Queensland National Parks and Wildlife Service, the Commonwealth World Heritage Unit, ICI Australia, the Australian Geographic Society, the Queensland Muscum, the Australian Museum, the Royal Zoological Society of New South Wales, the Linnean Socicty of New South Wales, Century Zinc, Mount IsaMines, Surrey Beatty \& Sons, the Riversleigh Socicty, and private supporters including Elaine Clark, Margaret Beavis, Martin Dickson, Sue \& Jim Lavarack and Sue \& Don Scott-Orr. Vital assistance in the field has come

FIG. 7. Geochronology and biocorrelation of the Etadunna and Namba Formations, Lake Palankarinna and Lake Pinpa, S.A. and lower Riversleigh faunas, northwestern Queensland. (Modified from Woodburne et al., 1993, figs 2 and 15). $N=$ Normal magnetic polarity; $R=$ Reversed magnetic polarity; MPTS = magnetic polarity time scale.
from many hundreds of volunteers as well as staff and postgraduate students of the University of New South Wales. Skilled preparation of most of the Riversleigh material has been carried out by Anna Gillespie. TJM acknowledges the assistance of Prof. Alberto Albani, Karen Black, Jenni Brammall, Henk Godthelp, Steve Salisbury, Anne Musser, Mary Knowles and his family.

LITERATURE CITED

APLIN, K.P. \& ARCHER, M. 1987. Recent advances in marsupial systematics with a new syncretic classification. p.xv-lxxii. In Archer, M. (ed.), Possums and Opossums: studies in evolution. (Surrey Beatty \& Sons and the Royal Zoological Society of New South Wales, Sydney).
ARCHER, M. 1977. Koobor notabalis (De Vis), an unusual koala from the Pliocene Chinchilla Sand. Memoirs of the Queensland Museum 18: 31-35.

ARCHER, M. 1984. The Australian marsupial radiation. Pp. 633-808. In Archer, M. \& Clayton, G. (eds), Vertebrate zoogeography and evolution in Australasia. (Hesperian Press: Perth).
ARCHER, M., GODTHELP, H., HAND, S.J. \& MEGIRIAN, D. 1989. Fossil mammals of Riversleigh, northwestern Queensland: preliminary overview of biostratigraphy, correlation and environmental change. Australian Zoologist 25: 29-65.
ARCHER, M., HAND, S.J. \& GODTHELP, H. 1994. Riversleigh. 2nd ed. (Reed: Sydncy).
CREASER, P. 1997. Oligocene-Miocene sediments of Riversleigh: the potential significance of topography. Memoirs of the Queensland Museum 41(2): 303-314.
FLOWER, W.H. I867. On the development and succession of teeth in the Marsupialia. Philosophical Transactions of the Royal Society, London 157: 631-641.
LUCKETT, W.P. 1993. An ontogenetic assessment of dental homologies in therian mammals. Pp 182-
204. In Szalay, F.S.. Novacek, M.J. \& McKenna, M.C. (eds), Mammal phylogeny: Mesozoic differentiation, multituberculates, monotremes, early therians and marsupials. (Springer-Verlag: New York).
MARSHALL, L.G., CASE, J.A. \& WOODBURNE, M.O. 1990. Phylogenetic relationships of the families of marsupials. Pp. 433-505. In Gcnoways, H.H. (ed.), Current mammalogy, vol. 2. (Plenum Press: New York).
PLEDGE, N.S. 1987. A new genus and species of primitive vombatoid marsupial from the medial Miocene Ngama Local Fauna of South Australia. Pp.419-422. In Archer, M. (ed.), Possums and Opossums: studies in evolution. (Surrey Beatty \& Sons and the Royal Zoological Society of New South Wales: Sydney).
SIMMONS, N.B. 1993. The importance of methods: archontan phylogeny and cladistic analysis of morphological data. Pp. 1-51. In MacPhee, D.E. (ed.), Primates and their relatives in phylogenetic perspective. (Plenum Press: New York).
TEDFORD, R.H. \& WOODBURNE, M.O. 1987. The llariidae, a new family of vombatiform marsupials from Miocene strata of South Australia and an evaluation of the homology of molar cusps in the

Diprotodontia. Pp. 401-418. In Archer, M. (ed.), Possums and Opossums: studies in evolution. (Surrcy Beatty \& Sons and the Royal Zoological Society of New South Wales: Sydney).
WILEY, E.O., BROOKS, D.R., SIEGEL-CAMSEY, D. \&FRANKS, V.A. 1991. The compleat cladist: a primer of phylogenetic procedures. University of Kansas Museum of Natural History Special Publication 19.
WOODBURNE, M.O., TEDFORD, R.H., ARCHER, M. \& PLEDGE, N.S. 1987. Madakoala, a new genus and two species of Miocene koalas (Marsupialia: Phascolarctidae) from South Australia, and a new species of Perikoala. Pp. 293317. In Archer, M. (ed.), Possums and Opossums: studies in evolution. (Surrey Beatty \& Sons and the Royal Zoological Society of New South Wales: Sydney).
WOODBURNE, M.O., MACFADDEN, B.J., CASE, J.A., SPRINGER, M.S., PLEDGE, N.S., POWER, J.D., WOODBURNE, J.M. \& SPRINGER, K.B. 1993. Land mammal biostratigraphy and magnetostratigraphy of the Etadunna Formation (late Oligocene) of South Australia. Journal of Vertebrate Paleontology 13: 483-515.

